The wave-guided travelling-wave laser action (amplified spontaneous emission) of a neat film of poly(p-phenylenevinylene) (PPV) on a quartz glass substrate prepared by a sulfinyl precursor technique is studied. The samples are transversally pumped with picosecond excitation pulses (wavelength 347.15 nm, duration 35 ps). Lasing occurs at 550 nm. The optical constants of the neat films are determined by transmittance measurements exploiting the multiple beam interference in the transparency region. A fluorescence spectroscopic characterisation is carried out determining the fluorescence quantum distribution, fluorescence quantum yield, degree of fluorescence polarisation, and fluorescence lifetime. The emitting chromophore size (emitting singlet exciton extension) is determined by the ratio of exciton radiative lifetime to repeat-unit based radiative lifetime. The obtained size of about two repeat units is discussed in a disordered solid-state polymer model.