The dinuclear ruthenium complex [(phen)2Ru(tatpp)Ru(phen)2]4+ (P; in which phen is 1,10-phenanthroline and tatpp is 9,11,20,22-tetraaza tetrapyrido[3,2-a:2'3'-c:3'',2''-l:2''',3''']-pentacene) undergoes a photodriven two-electron reduction in aqueous solution, thus storing light energy as chemical potential within its structure. The mechanism of this reduction is strongly influenced by the pH, in that basic conditions favor a sequential process involving two one-electron reductions and neutral or slightly acidic conditions favor a proton-coupled, bielectronic process. In this complex, the central tatpp ligand is the site of electron storage and protonation of the central aza nitrogen atoms in the reduced products is observed as a function of the solution pH. The reduction mechanism and characterization of the rich array of products were determined by using a combination of cyclic and AC voltammetry along with UV-visible reflectance spectroelectrochemistry experiments. Both the reduction and protonation state of P could be followed as a function of pH and potential. From these data, estimates of the various reduced species' pKa values were obtained and the mechanism to form the doubly reduced, doubly protonated complex, [(phen)2Ru(H2tatpp)Ru(phen)2]4+ (H2P) at low pH (< or =7) could be shown to be a two-proton, two-electron process. Importantly, H2P is also formed in the photochemical reaction with sacrificial reducing agents, albeit at reduced yields relative to those at higher pH.