Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The properties of the warm-hot intergalactic medium (WHIM) in cosmic filaments are among the least quantified units in modern astrophysics. The Spectrum Roentgen Gamma/eROSITA All Sky Survey (SRG/eRASS) provides a unique opportunity to study the X-ray emission of the WHIM. We applied both imaging and spectroscopic stacking techniques to the data of the first four eRASS scans to inspect the X-ray emissions from 7817 cosmic filaments identified from Sloan Digital Sky Survey (SDSS) optical galaxy samples. We obtained a 9σ significant detection of the total X-ray signal from filaments in the 0.3–1.2 keV band. Here, we introduce a novel method to estimate the contamination fraction from unmasked X-ray halos, active galactic nuclei, and X-ray binaries associated with filament galaxies. We found an approximately 40% contamination fraction for these unmasked sources, suggesting that the remaining 60% of the signal could be coming from the WHIM and a 5.4σ detection significance of the WHIM. Moreover, we modeled the temperature and baryon density contrast of the detected WHIM by fitting the stacked spectrum and surface brightness profile. The best-fit temperature log(T/K) = 6.84 ± 0.07, obtained by using a single temperature model, is marginally higher than in the simulation results. This could be due to the fitting of a single temperature model on a multi-temperature spectrum. Assuming a 0.2 solar abundance, the best-fit baryon density contrast logΔb = 1.88 ± 0.18 is in general agreement with the X-ray emitting phases in the IllustrisTNG simulation. This result suggests that the broadband X-ray emission traces the high end of the temperature and density values that characterize the entire WHIM population.
The properties of the warm-hot intergalactic medium (WHIM) in cosmic filaments are among the least quantified units in modern astrophysics. The Spectrum Roentgen Gamma/eROSITA All Sky Survey (SRG/eRASS) provides a unique opportunity to study the X-ray emission of the WHIM. We applied both imaging and spectroscopic stacking techniques to the data of the first four eRASS scans to inspect the X-ray emissions from 7817 cosmic filaments identified from Sloan Digital Sky Survey (SDSS) optical galaxy samples. We obtained a 9σ significant detection of the total X-ray signal from filaments in the 0.3–1.2 keV band. Here, we introduce a novel method to estimate the contamination fraction from unmasked X-ray halos, active galactic nuclei, and X-ray binaries associated with filament galaxies. We found an approximately 40% contamination fraction for these unmasked sources, suggesting that the remaining 60% of the signal could be coming from the WHIM and a 5.4σ detection significance of the WHIM. Moreover, we modeled the temperature and baryon density contrast of the detected WHIM by fitting the stacked spectrum and surface brightness profile. The best-fit temperature log(T/K) = 6.84 ± 0.07, obtained by using a single temperature model, is marginally higher than in the simulation results. This could be due to the fitting of a single temperature model on a multi-temperature spectrum. Assuming a 0.2 solar abundance, the best-fit baryon density contrast logΔb = 1.88 ± 0.18 is in general agreement with the X-ray emitting phases in the IllustrisTNG simulation. This result suggests that the broadband X-ray emission traces the high end of the temperature and density values that characterize the entire WHIM population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.