2021
DOI: 10.1158/1538-7445.am2021-183
|View full text |Cite
|
Sign up to set email alerts
|

Abstract 183: End-to-end training of convolutional network for breast cancer detection in two-view mammography

Abstract: Background:Early computer-aided detection systems for mammography have failed to improve the performance of radiologists. With the remarkable success of deep learning, some recent studies have described computer systems with similar or even superior performance to that of human experts. Among them, Shen et al. (Nature Sci. Rep., 2019) present a promising “end-to-end” training approach. Instead of training a convolutional net with whole mammograms, they first train a “patch classifier” that recognizes lesions i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance