MYC-driven medulloblastoma (MB) is a highly aggressive cancer type with poor prognosis and limited treatment options. Through CRISPR-Cas9 screening across MB cell lines, we identified the Mediator-associated kinase CDK8 as the top dependence for MYC-driven MB. Loss of CDK8 markedly reduces MYC expression and impedes MB growth. Mechanistically, we demonstrate that CDK8 depletion suppresses ribosome biogenesis and mRNA translation. CDK8 regulates occupancy of phospho-Polymerase II at specific chromatin loci facilitating an epigenetic alteration that promotes transcriptional regulation of ribosome biogenesis. Additionally, CDK8-mediated phosphorylation of 4EBP1 plays a crucial role in initiating eIF4E-dependent translation. Targeting CDK8 effectively suppresses cancer stem and progenitor cells, characterized by increased ribosome biogenesis activity. We also report the synergistic inhibition of CDK8 and mTOR in vivo and in vitro. Overall, our findings establish a connection between transcription and translation regulation, suggesting a promising therapeutic approach targets multiple points in the protein synthesis network for MYC-driven MB.