2018
DOI: 10.1158/1538-7445.am2018-45
|View full text |Cite
|
Sign up to set email alerts
|

Abstract 45: Snai2 is a new target to mediate glucocorticoid signaling on breast cancer cell migration

Abstract: Steroid hormone receptors such as estrogen and progesterone receptors are well studied in breast cancer pathology; they are also used as drug targets for breast cancer therapy in the clinic. In contrast, glucocorticoid (GC) as a ubiquitous stress activated steroid hormone is less investigated in breast cancer. However, GC is frequently used as a co-treatment for breast cancer chemotherapy that generates some controversial effects to even promote cancer progression or recurrence in certain subtypes of breast ca… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Another association was between the TF SNAI2 and gene PTPN6, where we find that the known association between genetic variant rs56800165 and SNAI2 extends to an association between the same SNP rs56800165 and effect gene PTPN6 (q-value FDR �0.17) [14]. SNAI2 is a direct target of the glucocorticoid receptor GR that regulates cell migration in breast cancer [70], while PTPN6 is involved in glucose homeostasis via negative regulation of insulin signalling [71]. PTPN6 is also associated with inflammatory phenotypes in multiple diseases [72,73].…”
Section: Plos Computational Biologymentioning
confidence: 69%
“…Another association was between the TF SNAI2 and gene PTPN6, where we find that the known association between genetic variant rs56800165 and SNAI2 extends to an association between the same SNP rs56800165 and effect gene PTPN6 (q-value FDR �0.17) [14]. SNAI2 is a direct target of the glucocorticoid receptor GR that regulates cell migration in breast cancer [70], while PTPN6 is involved in glucose homeostasis via negative regulation of insulin signalling [71]. PTPN6 is also associated with inflammatory phenotypes in multiple diseases [72,73].…”
Section: Plos Computational Biologymentioning
confidence: 69%