Oligonucleotide therapeutics, drugs consisting of 10–50 nucleotide‐long single‐ or double‐stranded DNA or RNA molecules that can bind to specific DNA or RNA sequences or proteins, include antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamers, and decoys. These oligonucleotide therapeutics could potentially become the third pillar of drug development. In particular, ASOs and siRNAs are advanced tools that are widely used to silence gene expression. They are used in clinical trials, as they have high specificity for target mRNAs and non‐coding RNAs and limited toxicity. However, their clinical application remains challenging. Although chemotherapy has benefits, it has severe adverse effects in many patients. Therefore, new modalities for targeted molecular therapy against tumors, including oligonucleotide therapeutics, are required, and they should be compatible with diagnosis using next‐generation sequencing. This review provides an overview of the therapeutic uses of ASOs, siRNAs, and miRNAs in clinical studies on malignant tumors. Understanding previous research and development will help in developing novel oligonucleotide therapeutics against malignant tumors.