Thymoquinone (TQ), a plant-based bioactive constituent derived from the volatile oil of Nigella sativa, has been shown to possess some anti-neoplastic activities. The present study aimed to investigate the mitochondria and apoptosis observed when TQ is applied against hepatocellular carcinoma (HepG2) and cholangiocarcinoma (HuCCT1) cells, two of the most common primary tumors of the liver. All cell lines were treated with increasing concentrations of TQ for varying durations. The anti-proliferative effect of TQ was measured using the methoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and resulted in dose- and time-dependent growth inhibition in both cell lines. Cell cycle, apoptosis, and assessment of mitochondria viability by morphology assessment and evaluation of the mitochondrial membrane potential were investigated. The present study confirms that TQ caused cell cycle arrest at different phases and induced apoptosis in both cell lines. A systematic review of rodent animal models was also carried out. Overall, our data seem to represent the most robust results, suggesting that TQ possesses promising therapeutic potential as an anti-tumor agent for the treatment of hepatocellular carcinoma and cholangiocarcinoma.