HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract geometrical computation 5: embedding computable analysisJérôme Durand-Lose
To cite this version:Jérôme Durand-Lose. The date of receipt and acceptance will be inserted by the editor Abstract Extended Signal machines are proven capable to compute any computable function in the understanding of recursive/computable analysis (CA), represented here with type-2 Turing machines (T2-TM) and signed binary. This relies on a mixed representation of any real number as an integer (in signed binary) plus an exact value in (−1, 1). This permits to have only finitely many signals present simultaneously. Extracting a (signed) bit, improving the precision by one bit and iterating a T2-TM only involve standard signal machines. For exact CA-computations, T2-TM have to deal with an infinite entry and to run through infinitely many iterations to produce an infinite output. This infinite duration can be provided by an infinite acceleration construction. Extracting/encoding an infinite sequence of bits is achieved as the limit of the approximation process with a careful handling of accumulations.