We investigated the role of stattic as an adjuvant molecule to increase the cytotoxicity of 5-fluorouracil (5-FU) through specific inhibition of molecular targets, signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid 2-related factor 2 (Nrf2) in HT-29 colon cancer cells. Cytotoxicity and apoptotic effects were investigated by methylthiazolyldiphenyl-tetrazolium bromide assay and flow cytometry analysis, respectively. Realtime polymerase chain reaction was applied to assess the messenger RNA (mRNA) level of STAT3, Nrf2, and apoptotic genes including Bax, Bcl-xl, and Bcl-2. The antitumor effect of 5-FU in combination with stattic induced synergistic effect in HT-29 cells with combination indexes (CIs) 0.49. Flow cytometric results related to apoptotic confirmed that there was up to 40% increase in the population of apoptotic cells in HT-29 colon cancer cells incubated with 5-FU and stattic compared with control groups. Our data from gene expression determined a substantial diminish in the mRNA levels of the Nrf2 and antiapoptotic gene Bcl-2 along with a noticeable increase in the level of the proapoptotic Bax in HT-29 colon cells that underwent cotreatment with 5-FU and stattic (P < 0.05). Moreover, the results exhibited that stattic can be used as adjuvant chemotherapy besides the 5-FU. This therapeutic approach in colon cancer could mediate 5-FU chemoresistance via modulating therapeutic targets (ie, STAT3 and Nrf2 pathways) and decreased 5-FU-related adverse effects.
K E Y W O R D S5-fluorouracil, apoptosis, colon cancer, combination chemotherapy, combination index, nuclear factor erythroid 2-related factor 2, signal transducer and activator of transcription 3, stattic