Individual levels of asymmetry in traits that display £uctuating asymmetry could be used as visual signals of phenotypic (and perhaps genotypic) quality, as asymmetry can often be negatively related to ¢tness parameters. There are some data to support this hypothesis but the experimental protocols employed have commonly resulted in asymmetries far larger than those observed in nature. To date, there has been little consideration of the ability of animals to accurately discriminate small asymmetries (of the magnitude observed in the wild) from perfect symmetry. This is key to assessing the plausibility of the asymmetry-signalling hypothesis. Here, I review the perceptual processes that may lead to the discrimination of asymmetry and discuss a number of ecologically relevant factors that may in£uence asymmetry signalling. These include: signal orientation, distance of trait elements from the axis of symmetry, trait complexity, trait contrast and colour, and the behaviour of both signaller and receiver. I also discuss the evolution of symmetry preferences and make suggestions as to where researchers should focus attention to examine the generality of asymmetry-signalling theory. In highly developmentally stable signalling systems the magnitude of asymmetry may be too small to be detected accurately and reliably, hence asymmetry signalling is unlikely to have evolved in these situations.