An R120G missense mutation in the small heat shock protein ␣-B-crystallin (CryAB R120G ) causes desmin-related cardiomyopathy (DRM). DRM is characterized by the formation of aggregates containing CryAB and desmin, and it can be recapitulated in transgenic mice by cardiac-specific expression of the mutant protein. In this article, we show that expression of CryAB R120G leads to the formation of electron-dense bodies characteristic of the DRMs and identify these bodies as aggresomes, which are characteristic of the neurodegenerative diseases. Cardiomyocytes transfected with adenovirus containing CryAB R120G establish the necessity and sufficiency of CryAB R120G expression for aggresome formation. The commonality of these aggresomes with oligomeric protein aggregates found in the amyloid-related degenerative diseases was corroborated by the presence of high levels of amyloid oligomers that may represent a primary toxic species in the amyloid diseases. These oligomeric amyloid intermediates are present also in cardiomyocytes derived from many human dilated and hypertrophic cardiomyopathies.H uman heart failure is the leading cause of death in the developed world, and it represents a final common endpoint for several disease entities, including hypertension, coronary artery disease, and the cardiomyopathies (1, 2). A lack of pathogenic commonality is underscored by the large number of mutations in different classes of cardiac proteins that have been linked to dilated and hypertrophic cardiomyopathy (HCM) (3). Mutations in the cytoskeletal and associated proteins can be causative because these proteins function in structural, sensor, and signaling roles in the normal and diseased cardiomyocyte (4). For example, up-regulation of the intermediate filament protein desmin occurs in cardiac disorders such as cardiac hypertrophy and congestive heart failure (CHF) (5), and desmin mutations are associated with desmin-related cardiomyopathy (DRM) and idiopathic dilated cardiomyopathy (6, 7). Mutations in other proteins also have been associated with the DRMs, and genetic evidence linking an R120G mutation in ␣-B-crystallin (CryAB, CryAB R120G ) to human DRM (8) prompted a series of experiments in which we showed that cardiac-restricted transgenic (TG) expression of CryAB R120G was sufficient to cause heart failure in a mouse model (9). Although up-regulation of CryAB is associated with disease states including DRM, its synthesis probably represents a general cellular response to stress because CryAB has chaperone-like activity. Indeed, CryAB, which binds to both desmin and cytoplasmic actin, probably participates normally as a chaperone in intermediate filament formation and maintenance in the heart.The ␣-crystallins (␣-A and ␣-B) were of interest initially as major structural proteins present in the lens of the vertebrate eye. However, the discovery that they were related to the small heat shock proteins (hsps) in Drosophila (10) prompted reevaluation of their broader role(s), and it is now known that CryAB belongs to the sma...