2017
DOI: 10.1007/978-981-10-6626-9_1
|View full text |Cite
|
Sign up to set email alerts
|

AC: An Audio Classifier to Classify Violent Extensive Audios

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
6
0

Year Published

2018
2018
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(6 citation statements)
references
References 5 publications
0
6
0
Order By: Relevance
“…The result shows a precision of 93% at a false rejection rate of 5% when the SNR is 10 dB. Research work in [22,26] has also used GMM for the classification of a scream under noisy conditions.…”
Section: Scream Detection Architecturesmentioning
confidence: 98%
See 3 more Smart Citations
“…The result shows a precision of 93% at a false rejection rate of 5% when the SNR is 10 dB. Research work in [22,26] has also used GMM for the classification of a scream under noisy conditions.…”
Section: Scream Detection Architecturesmentioning
confidence: 98%
“…Research is ongoing on the effect of screams for text-independent speaker recognition systems [20]. Many research works have been conducted on scream detection for surveillance applications in both indoor and outdoor noisy environments [21][22][23][24][25][26][27][28][29][30][31][32].…”
Section: Scream Detection Architecturesmentioning
confidence: 99%
See 2 more Smart Citations
“…In more complicated and complex signals such as speech or music where the signal changes its properties over time, it is evidently more meaningful to refer to the altering frequency content over a smaller time interval than an infinite time interval. Spectral Flux E. R. Siebert et al [29], L. Gerosa et al [2],, M. Z. Zaheer et al [14], R. A. Breguet et al [31] Spectral Tilt L. Gerosa et al [2], R. A. Breguet et al [31], C. Zhang et al [25] Spectral Entropy M. Mark et al [21], A. Pillai et al [8] , N. Hayasaka et al [4], W. Liao et al [23] Signal Bandwidth M. Mark et al [21], W. Liao et al [23] Sub-Band Energy Ratio J. H. L. Hansen et al [1], C. Chan et al [22], M. Z. Zaheer et al [14], C. Zhang et al [25] Linear Prediction P. C. Schön et al [27], N. E. O. Connor et al [30] Prosodic Pitch/Fundamental Frequency M. Mark et al [21], L. H. Arnal et al [7] , C. Chan et al [22], L. Gerosa et al [2], J. H. L. Hansen et al [13], M. Z. Zaheer et al [14], K. Kato [19], B. Uzkent et al [20], W. Liao et al [23] Loudness/Intensity L. Gerosa et al [2], K. Kato [19], C. Zhang et al [25] Rhythm/Duration C. Chan et al [22], K. Kato [19], C. Zhang et al [25] Log Energy N. Hayasaka et al [4], W. Huang et al [3] 0.0% 70 | P a g e www.ijacsa.thesai.org …”
Section: B Analysis Of Scream Sound Featuresmentioning
confidence: 99%