Convex relaxations of AC optimal power flow (AC-OPF) problems have attracted significant interest as in several instances they provably yield the global optimum to the original non-convex problem. If, however, the relaxation is inexact, the obtained solution is not AC-feasible. The quality of the obtained solution is essential for several practical applications of AC-OPF, but detailed analyses are lacking in existing literature. This paper aims to cover this gap. We provide an in-depth investigation of the solution characteristics when convex relaxations are inexact, we assess the most promising AC feasibility recovery methods for large-scale systems, and we propose two new metrics that lead to a better understanding of the quality of the identified solutions. We perform a comprehensive assessment on 96 different test cases, ranging from 14 to 3120 buses, and we show the following: (i) Despite an optimality gap of less than 1%, several test cases still exhibit substantial distances to both AC feasibility and local optimality and the newly proposed metrics characterize these deviations. (ii) Penalization methods fail to recover an ACfeasible solution in 15 out of 45 cases, and using the proposed metrics, we show that most failed test instances exhibit substantial distances to both AC-feasibility and local optimality. For failed test instances with small distances, we show how our proposed metrics inform a fine-tuning of penalty weights to obtain ACfeasible solutions. (iii) The computational benefits of warmstarting non-convex solvers have significant variation, but a computational speedup exists in over 75% of the cases.