2022
DOI: 10.48550/arxiv.2203.05457
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Accelerated gradient methods combining Tikhonov regularization with geometric damping driven by the Hessian

Abstract: In a Hilbert setting, for convex differentiable optimization, we consider accelerated gradient dynamics combining Tikhonov regularization with Hessian-driven damping. The Tikhonov regularization parameter is assumed to tend to zero as time tends to infinity, which preserves equilibria. The presence of the Tikhonov regularization term induces a strong convexity property which vanishes asymptotically. To take advantage of the exponential convergence rates attached to the heavy ball method in the strongly convex … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance