Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer’s disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20–60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.