SUMMARYIn this paper, we consider a nonlinear finite volume method to solve the steady‐state diffusion equation in nonhomogeneous and non‐isotropic media. The method is nonlinear even if the original problem is linear. In its original form, the scheme is monotone, because the coefficient matrix is monotone under certain assumptions and, as a consequence, whenever the analytic operator demands, it preserves the positivity of numerical solutions. On the other hand, the scheme is unable to reproduce piecewise linear solutions exactly. In order to recover this interesting feature, we use two different interpolation strategies. In this case, even though we are unable to prove monotonicity, we show some numerical evidences that the combined method has an improved behavior, producing second order accurate solutions, even for nonhomogeneous and strongly anisotropic media. Copyright © 2013 John Wiley & Sons, Ltd.