In cardiac magnetic resonance imaging (CMR), accurate flow measurements rely on perpendicular plane-alignment with flow direction. For 2D phase contrast (PC) cardiac magnetic resonance measurements, planes have to be defined during the examination of the heart, which is time consuming and error-prone. Collection of flow information of the entire volume of the heart by a 4D flow CMR postpones plane alignment to post-processing. Sampling of such a large amount of data requires acceleration of data acquisition with techniques such as SENSitivity Encoding (k-t SENSE) or Broad-use Linear Acquisition Speed-up Technique (k-t BLAST). Objectives of the study were to compare 4D flow CMR, accelerated with two different acceleration methods with the established 2D PC CMR based on assessment of stroke volume at all four cardiac valves. The values of stroke volume acquired with the 4D flow CMR SENSE did not differ significantly when compared to the 2D PC CMR SENSE at the left side of the heart (aortic and mitral valve). Significant differences between the techniques were seen at the pulmonic and tricuspid valves. Acceleration with k-t BLAST revealed significantly lower values of stroke volume at all cardiac valves, except at the mitral valve.
AbstractIn cardiac magnetic resonance imaging (CMR), accurate flow measurements rely on perpendicular plane-alignment with flow direction. For 2D phase contrast (PC) cardiac magnetic resonance measurements, planes have to be defined during the examination of the heart, which is time consuming and error-prone. Collection of flow information of the entire volume of the heart by a 4D flow CMR postpones plane alignment to post-processing. Sampling of such a large amount of data requires acceleration of data acquisition with techniques such as SENSitivity Encoding (k-t SENSE) or Broad-use Linear Acquisition Speed-up Technique (k-t BLAST). Objectives of the study were to compare 4D flow CMR, accelerated with two different acceleration methods with the established 2D PC CMR based on assessment of stroke volume at all four cardiac valves. The values of stroke volume acquired with the 4D flow CMR SENSE did not differ significantly when compared to the 2D PC CMR SENSE at the left side of the heart (aortic and mitral valve). Significant differences between the techniques were seen at the pulmonic and tricuspid valves. Acceleration with k-t BLAST revealed significantly lower values of stroke volume at all cardiac valves, except at the mitral valve.