2020
DOI: 10.17559/tv-20190328105259
|View full text |Cite
|
Sign up to set email alerts
|

Accelerated Proximal Algorithm for Finding the Dantzig Selector and Source Separation Using Dictionary Learning

Abstract: In most of the applications, signals acquired from different sensors are composite and are corrupted by some noise. In the presence of noise, separation of composite signals into its components without losing information is quite challenging. Separation of signals becomes more difficult when only a few samples of the noisy undersampled composite signals are given. In this paper, we aim to find Dantzig selector with overcomplete dictionaries using Accelerated Proximal Gradient Algorithm (APGA) for recovery and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?