Abstract:Deep neural networks (DNNs) obtained remarkable achievements in remaining useful life (RUL) prediction of industrial components. The architectures of these DNNs are usually determined empirically, usually with the goal of minimizing prediction error without considering the time needed for training. However, such a design process is timeconsuming as it is essentially based on trial-and-error. Moreover, this process may be inappropriate in those industrial applications where the DNN model should take into accoun… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.