Accelerating Giant-impact Simulations with Machine Learning
Caleb Lammers,
Miles Cranmer,
Sam Hadden
et al.
Abstract:Constraining planet-formation models based on the observed exoplanet population requires generating large samples of synthetic planetary systems, which can be computationally prohibitive. A significant bottleneck is simulating the giant-impact phase, during which planetary embryos evolve gravitationally and combine to form planets, which may themselves experience later collisions. To accelerate giant-impact simulations, we present a machine learning (ML) approach to predicting collisional outcomes in multiplan… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.