2012
DOI: 10.1007/978-3-642-28145-7_9
|View full text |Cite
|
Sign up to set email alerts
|

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Abstract: Model order reduction of a dynamical linear time-invariant system appears in many applications from science and engineering. Numerically reliable SVD-based methods for this task require in general O(n 3 ) floating-point arithmetic operations, with n being in the range 10 3 − 10 5 for many practical applications. In this paper we investigate the use of graphics processors (GPUs) to accelerate model reduction of large-scale linear systems by off-loading the computationally intensive tasks to this device. Experim… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
6
0
1

Year Published

2012
2012
2019
2019

Publication Types

Select...
7

Relationship

5
2

Authors

Journals

citations
Cited by 7 publications
(8 citation statements)
references
References 16 publications
1
6
0
1
Order By: Relevance
“…Posteriormente, el trabajo fue extendido [18] para la resolución de ecuaciones de Lyapunov al utilizar una GPU y explotando estrategias de precisión mixta para alcanzar niveles de precisión altos a un costo computacional bajo. También es interesante el artículo [17], donde se acelera la resolución del problema de reducción de modelos generalizado, mediante el método BT sobre arquitecturas híbridas GPU-CPU. El trabajo se basa en el uso de implementaciones eficientes propietarias, y particularmente desarrolladas sobre GPU, de las principales operaciones matriciales requeridas por el método: la factorización LU, la resolución de sistemas triangulares y la multiplicación de matrices.…”
Section: Reducción De Modelos Y Problemas De Control Con Gpusunclassified
“…Posteriormente, el trabajo fue extendido [18] para la resolución de ecuaciones de Lyapunov al utilizar una GPU y explotando estrategias de precisión mixta para alcanzar niveles de precisión altos a un costo computacional bajo. También es interesante el artículo [17], donde se acelera la resolución del problema de reducción de modelos generalizado, mediante el método BT sobre arquitecturas híbridas GPU-CPU. El trabajo se basa en el uso de implementaciones eficientes propietarias, y particularmente desarrolladas sobre GPU, de las principales operaciones matriciales requeridas por el método: la factorización LU, la resolución de sistemas triangulares y la multiplicación de matrices.…”
Section: Reducción De Modelos Y Problemas De Control Con Gpusunclassified
“…In recent years, Graphics Processing Units (GPUs) have shown remarkable performance in the computation of large-scale matrix operations, and particularly, in the solution of matrix equations; see [4,5] among others. In addition to its performance, GPUs present other interesting properties, such as a low Watt-per-floating-point arithmetic operation ratio and an afforable price.…”
Section: Introductionmentioning
confidence: 99%
“…A number of efforts have demonstrated the remarkable speed-up that these systems provide for the solution of dense and sparse linear algebra problems. Among these, a few works targeted the numerical solution of matrix equations, which basically can be decomposed into primitive linear algebra problems, using this class of hardware [5][6][7][8][9]. In this paper, we review the rapid solution of Lyapunov equations, AREs and DREs, on multicore processors, as well as GPUs, making the following specific contributions:…”
Section: Introductionmentioning
confidence: 99%
“…• We collect and update a number of previous results distributed in the literature [5][6][7][8][9], which show that the matrix sign function provides a common and crucial building block for the efficient parallel solution of these three types of matrix equations on multicore CPUs, hybrid CPU-GPU systems and hybrid platforms with multiple GPUs. • We extend the single-precision (SP) experiments previously reported in [5][6][7] with double-precision (DP) data. This is especially relevant, as DP solutions are required in practical control theory applications.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation