Modern plant breeding technologies have played a central role in addressing global food security challenges. These technologies, including next‐generation sequencing (NGS) and multi‐omics analysis, genome‐wide association analysis (GWAS), genome editing and transgenics, machine learning, and speed breeding, have been improving crop yield and quality as well as crop adaptability under climate change conditions, such as tolerance to both biotic and abiotic stresses. Furthermore, identification, searching, assessment, and combining desirable integrated (morphological, physiological, and biochemical) attributes have been achieved with greater accuracy, efficiency, time, and cost‐effectiveness, all of which are essential to meeting global food demands. These advancements hold promises for increasing food security in the face of population growth and climate change, ensuring a more resilient and sustainable food production system. Therefore, this topical collection was developed to feature the latest developments in modern plant breeding approaches to understand and improve plant attributes essential for ensuring sustainable crop production.