Heating, Ventilation, and Air Conditioning (HVAC) systems account for 40% to 50% of energy usage in commercial buildings. Thus, innovative ways to control and manage HVAC systems while preserving occupants' comfort are required. Stateof-the-art solutions employ pervasive systems with sensors or smart devices to gauge individual thermal sensations, yet assessing these methods is challenging. Real-world experiments are expensive, limited in access, and often overlook occupant and regional diversity. To address this, we introduce Co-zyBench, a benchmark tool using a Digital Twin (DT) approach for evaluating personalized thermal comfort systems. It employs a co-simulation middleware interfacing between a DT of the smart building and its HVAC system and another DT representing occupants' dynamic thermal preferences in various spaces. The DTs that support Co-zyBench are generated based on information, including data captured by sensors, of the space in which the thermal comfort system has to be evaluated. Co-zyBench incorporates metrics for energy consumption, thermal comfort, and occupant equality. It also features reference DTs based on standard buildings, HVAC systems, and occupants with diverse thermal preferences.