eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
RSC Advances RSCPublishing
ARTICLEThis journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1 The interactions of polyvinyl chloride (PVC) and biomass components (hemi-cellulose, cellulose and lignin) during fast pyrolysis were investigated at 800 °C in a fixed bed reactor. The interactions of PVC and biomass components decreased the HCl yield and increased the tar yield significantly. During the co-pyrolysis of PVC with the biomass components, most polycyclic aromatic hydrocarbons (PAH) components were decreased compared with the calculated proportion results. The mechanism of the interactions may be that in the fast pyrolysis process, the processes of dehydrochlorination and chain scission occur in a very short time. Biomass materials and/or bio-char can act as catalysts which inhibit the dehydrochlorination process or promote the chain scission of PVC. Therefore, the dehydrochlorination process might not be completed, resulting in the production of chlorinated oil compounds. Thus, the HCl yield is reduced and PAH concentrations are decreased during the co-pyrolysis of PVC and biomass.