We introduce a computational Maxwell-Bloch framework for investigating out of equilibrium optical emitters in open cavity-less systems. To do so, we compute the pulse-induced dynamics of each emitter from fundamental light-matter interactions and self-consistently calculate their radiative coupling, including phase inhomogeneity from propagation effects. This semiclassical framework is applied to open systems of quantum dots with different density and dipolar coupling. We observe that signatures of superradiant behavior, such as directionality and faster decay, are weak for systems with extensions comparable to λ/2. In contrast, subradiant features are robust and can produce long-term population trapping effects. This computational tool enables quantitative investigations of large optical ensembles in the time domain and could be used to design new systems with enhanced superradiant and subradiant properties.