Abstract-Machine learning is becoming pervasive; decades of research in neural network computation is now being leveraged to learn patterns in data and perform computations that are difficult to express using standard programming approaches. Recent work has demonstrated that custom hardware accelerators for neural network processing can outperform software implementations in both performance and power consumption. However, there is neither an agreed-upon interface to neural network accelerators nor a consensus on neural network hardware implementations. We present a generic set of software/hardware extensions, X-FILES, that allow for the generalpurpose integration of feedforward and feedback neural network computation in applications. The interface is independent of the network type, configuration, and implementation. Using these proposed extensions, we demonstrate and evaluate an example dynamically allocated, multi-context neural network accelerator architecture, DANA. We show that the combination of X-FILES and our hardware prototype, DANA, enables generic support and increased throughput for neural-networkbased computation in multi-threaded scenarios. These diverse implementations and usage cases drive fascinating innovation. As diversity increases, however, a gap is developing between these innovations and the state of today's hardware and software.
I. INTRODUCTION1 As such it is worth con-