Total knee arthroplasty (TKA) is a successful treatment for knee osteoarthritis. The emphasis on optimal sizing and alignment of the components has led to an increase in the use of tools that allow for preoperative planning and verification of intraoperative steps. Computer navigation and robotic surgery have emerged as valuable tools for planning and performing surgery with greater precision and consistency. Objective. The aim of this paper is to organise information on the use of robotic systems in total knee arthroplasty based on own personal experience and analysis of contemporary literature sources. Methods. This study analysed professional articles that discussed the advantages and disadvantages of using robotic systems during knee arthroplasty. The information was obtained from electronic databases including PubMed, Scopus, Web of Science and Google Scholar, with a search span of over 20 years. Computerised or navigation devices allow the surgeon to enter anatomical data via an interface and receive feedback on the alignment of the implant and the knee as a whole, but cannot be programmed to perform additional tasks. Currently, several patented systems are available, and rapid technological advances in computer processing power have allowed for the rapid development of robotic surgical systems. Robotic systems usually provide feedback similar to navigation systems, but they can also be programmed to assist in specific surgical tasks. It is expected that these systems will become more reliable and accurate in the future, potentially leading to a reduced role for physicians in certain aspects of the surgical process, limiting their involvement to supervision, and thus improving the workflow of the operating room. The integration of new technologies, such as mixed reality, which overlays simulated images on real-life images, is expected to further expand the range of capabilities of these devices. But for now, it is crucial to establish the long-term outcomes of robotic-assisted total knee arthroplasty as a process to determine the viability of widespread adoption of these devices.