There is an increased utilization of wholegrain cereals in food formulations considering their richness in essential nutritional and biological properties. In this study, each component (amaranth, acha and pearl millet) of the multigrain blend was individually pre‐fermented. Thereafter, the pre‐fermented grain flours were optimized to obtain two unique blends (90:5:5 and 47.98: 26.68:25.34) containing high protein content (~23% and 17%) and low glycemic index (~43). The optimum blends were processed into instant porridges (PR1, PR2) and analyzed for its nutritional composition, blood glucose lowering ability, antioxidant enzyme and tissue/serum biochemical makers modulatory ability in obese‐diabetic animals. The porridge showed significant nutritional profile, consumption of formulated multigrain porridge reduced blood glucose level (by 62% and 66%), upregulated the antioxidant defense system to near normal levels likewise, significantly reduced serum biochemical parameters. Thus, suggests that the multigrain blends/porridge is nutrient‐dense possessing beneficial effect to maintain antioxidant levels in the diabetic condition with potential to attenuate oxidative damage.
Practical applications
Prolonged feeding with high‐fat diet induces hypercholesterolemia in experimental animals. Further interperitoneal injection of streptozotocin induces experimental diabetes with a cascade of oxidative stress related complications in serum and tissue parameters. Porridge is a traditional meal while multigrain porridge is a nutrient dense meal which may exert curative effect. In this work, it was shown that dietary intervention with multigrain porridge product promoted positive weight control, portrayed hepatoprotective effect as shown by the elevated levels of biomarker (ALT, AST, ALP) and antioxidant enzymes (CAT, SOD, GPx) as well as modulation of serum lipid profile (total cholesterol, triglycerides, high density lipoprotein‐cholesterol). Thus, the multigrain porridge may be a functional food product to combat hypercholesterolemia and hyperglycemia especially PR1 which appeared to be more efficient than PR2 in modulating oxidative stress, conferring hypoglycemic effect and lowering lipid levels in obese‐diabetic rats model studied.