Black Soldier Fly (Hermetia illucens) is well-known for having a high protein and lipid content during its larval stage and is cultivated for animal feed. Rearing Black Soldier Fly larvae (BSFL) produces byproducts known as frass and larval sheddings in large volumes with limited applications. Therefore, there is a need to identify viable sustainable management strategies to prevent potential environmental issues associated with their accumulation. Accordingly, the purpose of this study was to evaluate BSFL frass and larval sheddings as viable ingredients in composts that utilize additional nitrogen feedstocks. Four experimental compost piles (22.7 m3) with different ratios of BSFL frass and sheddings were developed based on previous research; two piles included 25% frass, whereas the other two included 30% frass. Across these piles, the inclusion of wood chips, food waste, and livestock manure varied to determine the best proportions for compost. The compost piles were maintained for five months, including a curing phase. After curing, samples from each pile were collected to analyze their pH, macro- and micro-nutrients, particle size, stability, and maturity. The findings indicated that the pH levels (7.1–8.1) and carbon-to-nitrogen ratios (10.40–13.20) were within the optimal ranges for all piles. The phosphorus levels (0.75–1.30%) of each pile exceeded typical ranges, likely due to the high phosphorus content of the frass itself. The moisture content varied widely (24.5–51.7%), with some piles falling below optimal levels. Stability and maturity tests yielded mixed results, with some piles demonstrating continued decomposition activity. Overall, the findings indicated that inclusion rates of 25–30% of BSFL frass and sheddings produced compost with generally favorable characteristics when high nitrogen feedstocks were also incorporated into the compost piles. These findings align with those from previous research and highlight both the potential and challenges of incorporating BSFL frass into compost production.