We designed and synthesized an amide-based monomer decorated with furan as the diene unit and maleimide as the dienophile unit at its termini. Single-crystal X-ray diffraction (SCXRD) analysis of its crystal revealed a head-to-tail arrangement of molecules with furan and maleimide groups of neighboring molecules proximally placed in an arrangement suitable for their topochemical Diels−Alder cycloaddition (TDAC) to form a linear polymer. The monomer underwent a spontaneous single-crystal-to-single-crystal (SCSC) polymerization at room temperature, yielding a linear polymer with oxabicyclic linkage. SCXRD analysis revealed that the cycloaddition occurred in an exoselective manner, and the absolute stereochemistry of the oxa-bicyclic linkage alternated in successive repeat units, leading to a syndiotactic linear polymer. The polymerization can be accelerated by heating the powder at 120 °C; the topochemical nature of the high-temperature reaction was established by time dependent differential scanning calorimetry (DSC), time-dependent powder X-ray diffraction (PXRD), and UV−visible spectroscopic analysis; the polymer was characterized using solid-state NMR spectroscopy and MALDI-TOF mass spectrometry.