We report a quantitative kinetic evaluation and study of support effects for partial alkyne hydrogenation using oleylaminecapped Au colloids as catalyst precursors. The amine capping agents can be removed under reducing conditions, generating supported Au nanoparticles of~2.5 nm in diameter. The catalysts showed high alkene selectivity (> 90 %) at all conversions during alkyne partial hydrogenation. Catalytic activity, observed rate constants, and apparent activation energies (25-40 kJ/mol) were similar for all Au catalysts, indicating support effects are relatively small. Alkyne adsorption, probed with FTIR and DFT, showed adsorption on the support was associated with hydrogen-bonding interactions. DFT calculations indicate strong alkyne adsorption on Au sites, with the strongest adsorption sites at the metal-support interface (MSI). The catalysts had similar hydrogen reaction orders (0.7-0.9), and 1octyne reaction orders (~À 0.2), suggesting a common mechanism. The reaction kinetics are most consistent with a mechanism involving the non-competitive activated adsorption of H 2 on an alkyne-covered Au surface.[a] Dr.