Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 2019
DOI: 10.1145/3347146.3359078
|View full text |Cite
|
Sign up to set email alerts
|

Accident Risk Prediction based on Heterogeneous Sparse Data

Abstract: Reducing traffic accidents is an important public safety challenge, therefore, accident analysis and prediction has been a topic of much research over the past few decades. Using small-scale datasets with limited coverage, being dependent on extensive set of data, and being not applicable for real-time purposes are the important shortcomings of the existing studies. To address these challenges, we propose a new solution for real-time traffic accident prediction using easy-to-obtain, but sparse data. Our soluti… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
42
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 112 publications
(59 citation statements)
references
References 23 publications
0
42
0
3
Order By: Relevance
“…U radu [2] diskutuje se o mogućnosti predviđanja saobraćajnih nesreća u realnom vremenu uz oslonac na različite grupe atributa, gde postoji uticaj svakoga od njih na mogućnost izazivanja nezgode u okvirima drumskog saobraćaja. Korišćeni su podaci koji se odnose na saobraćajne nesreće registrovane na teritoriji Sjedinjenih Američkih Država [2,3]. Rešenja su formirana upotrebom modela zasnovanog na dubokoj neuronskoj mreži.…”
Section: Prethodna Istraživanjaunclassified
“…U radu [2] diskutuje se o mogućnosti predviđanja saobraćajnih nesreća u realnom vremenu uz oslonac na različite grupe atributa, gde postoji uticaj svakoga od njih na mogućnost izazivanja nezgode u okvirima drumskog saobraćaja. Korišćeni su podaci koji se odnose na saobraćajne nesreće registrovane na teritoriji Sjedinjenih Američkih Država [2,3]. Rešenja su formirana upotrebom modela zasnovanog na dubokoj neuronskoj mreži.…”
Section: Prethodna Istraživanjaunclassified
“…Computer vision based [24] techniques are also popular and they exploits the use of real time camera even LiDAR sensor. Use of deep models like autoencoder [25], DNN [26], LSTM [27] etc. are being popular now-a-days due to their capability of extracting the insights from data with different modality.…”
Section: A Literature On Accident Predictionmentioning
confidence: 99%
“…is section describes the process of constructing a California statewide spatial-temporal traffic accident dataset (CASTA), using two datasets named US accident [48] and California Department of Transportation (Caltrans) Performance Measurement System (PeMS) [49].…”
Section: Datasetmentioning
confidence: 99%