2020
DOI: 10.1016/j.jog.2020.101693
|View full text |Cite
|
Sign up to set email alerts
|

Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities

Abstract: It is well known that GNSS permanent station coordinate time series exhibit time-correlated noise. Spatial correlations between coordinate time series of nearby stations are also long-established and generally handled by means of spatial filtering techniques. Accounting for both the temporal and spatial correlations of the noise via a spatiotemporal covariance model is however not yet a common practice. We demonstrate in this paper the interest of using such a spatiotemporal covariance model of the stochastic … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
16
0
5

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(22 citation statements)
references
References 33 publications
(47 reference statements)
1
16
0
5
Order By: Relevance
“…By doing this, we assume the spatial correlation of position errors and its changes through time are independent of the temporal correlation of each individual station. This hypothesis was necessary as it is not practically possible to synthetize a covariance matrix that accounts for FN in both the temporal and spatial domains at the same time in a least squares network solution (Benoist et al., 2020). In addition, this assumption is commonly applied in most studies when the colored noise content in a given series is estimated with no regard for its spatial correlation.…”
Section: Resultsmentioning
confidence: 99%
“…By doing this, we assume the spatial correlation of position errors and its changes through time are independent of the temporal correlation of each individual station. This hypothesis was necessary as it is not practically possible to synthetize a covariance matrix that accounts for FN in both the temporal and spatial domains at the same time in a least squares network solution (Benoist et al., 2020). In addition, this assumption is commonly applied in most studies when the colored noise content in a given series is estimated with no regard for its spatial correlation.…”
Section: Resultsmentioning
confidence: 99%
“…Inicialmente, é possível afirmar que o software SARI apresenta-se como um software com grande potencial na realização de análises de séries temporais de coordenadas obtidas com uso do GNSS, por apresentar fidelidade em suas aplicações, uma vez que os ruídos que afetaram as séries temporais de coordenadas obtidas com GNSS, estudados nesta pesquisa, foram ruídos brancos e ruídos de cintilação (ruídos da lei de potência), o que confirma com os resultados de (WANG;HERRING, 2019;SANTAMARÍA-GÓMEZ, 2019;BENOIST et al, 2020;HE et al, 2019;BOS et al, 2020). Isto mostra a eficiência do software SARI na determinação dos ruídos de lei de potência por meio da estimativa MLE.…”
Section: Considerações Finais E Conclusõesunclassified
“…Por fim, é percebido que os ruídos que afetaram as séries temporais de coordenadas do GNSS, estudados nesta pesquisa, foram ruídos brancos e ruídos de cintilação (ruídos da lei de potência), o que confirma com os resultados de Wang e Herring (2019); Santamaría-Gómez (2019); Benoist et al (2020); He et al (2019); Bos et al (2020). Também é possível perceber que os ruídos não afetaram nos valores das velocidades das estações, o que corrobora a afirmação de , que informam que os ruídos só começam a se tornar mais importantes que os sinais periódicos para séries com mais de 9 anos.…”
Section: Considerações Finais E Conclusõesunclassified
See 1 more Smart Citation
“…For GNSS, the process noise is usually different from observation noise. The process noise is directly connected to the geophysical phenomenon, which has not only linear but also non-linear variations, and suffers both time and spatial correlations [27][28][29]. As a result, it is relatively more difficult to estimate the process noise than the observation covariance matrix.…”
Section: Preference For Recursive Emmentioning
confidence: 99%