Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A digital model of the ground surface has many potential applications in forestry. Nowadays, Light Detection and Ranging (LiDAR) is one of the main sources for collecting morphological data. Point clouds obtained via laser scanning are used for modelling the ground surface by interpolation, a process which is affected by various errors. Using LiDAR data to collect ground surface data for forestry applications is a challenging scenario because the presence of forest vegetation will hinder the ability of laser pulses to reach the ground. The density of ground observations will be therefore reduced and not homogenous (as it is affected by the variations in canopy density). Furthermore, forest areas are generally present in mountainous areas, in which case the interpolation of the ground surface is more challenging. In this paper, we present a comparative analysis of interpolation accuracy for nine algorithms, which are used for generating Digital Terrain Models from Airborne Laser Scanning (ALS) data, in mountainous terrain covered by dense forest vegetation. For most of the algorithms we find a similar performance in terms of general accuracy, with RMSE values between 0.11 and 0.28 m (when model resolution is set to 0.5 m). Five of the algorithms (Natural Neighbour, Delauney Triangulation, Multilevel B-Spline, Thin-Plate Spline and Thin-Plate Spline by TIN) have vertical errors of less than 0.20 m for over 90 percent of validation points. Meanwhile, for most algorithms, major vertical errors (of over 1 m) are associated with less than 0.05 percent of validation points. Digital Terrain Model (DTM) resolution, ground slope and point cloud density influence the quality of the ground surface model, while for canopy density we find a less significant link with the quality of the interpolated DTMs.data can be used for tree inventories [17][18][19][20], monitoring vegetation health [21][22][23][24] or generating Canopy Height Models (CHMs) [16,25].The main advantage of LiDAR, with regard to forestry, is the fact that laser pulses can penetrate the canopy cover, with some of the pulses reaching the ground level. Therefore, geomorphological data is collected even if the ground is covered by forest vegetation, allowing the generation of a detailed and accurate ground surface model.In general, a data structure that models the elevation over an area is called a Digital Elevation Model (DEM). In short, a DEM is simply a surface that represents the elevation of a certain area in reference to a common vertical datum. When this type of model is used for a representation of the bare-earth surface, it can also be termed as Digital Terrain Model (DTM). In this paper, we opted for the term DTM, in order to emphasize the fact that the models we analyse, while generally speaking classify as DEMs, are meant specifically to represent the surface of the bare-earth.To obtain such a representation of the ground surface, a LiDAR point cloud must initially be filtered-a process which involves the separation of ground-level points from the orig...
A digital model of the ground surface has many potential applications in forestry. Nowadays, Light Detection and Ranging (LiDAR) is one of the main sources for collecting morphological data. Point clouds obtained via laser scanning are used for modelling the ground surface by interpolation, a process which is affected by various errors. Using LiDAR data to collect ground surface data for forestry applications is a challenging scenario because the presence of forest vegetation will hinder the ability of laser pulses to reach the ground. The density of ground observations will be therefore reduced and not homogenous (as it is affected by the variations in canopy density). Furthermore, forest areas are generally present in mountainous areas, in which case the interpolation of the ground surface is more challenging. In this paper, we present a comparative analysis of interpolation accuracy for nine algorithms, which are used for generating Digital Terrain Models from Airborne Laser Scanning (ALS) data, in mountainous terrain covered by dense forest vegetation. For most of the algorithms we find a similar performance in terms of general accuracy, with RMSE values between 0.11 and 0.28 m (when model resolution is set to 0.5 m). Five of the algorithms (Natural Neighbour, Delauney Triangulation, Multilevel B-Spline, Thin-Plate Spline and Thin-Plate Spline by TIN) have vertical errors of less than 0.20 m for over 90 percent of validation points. Meanwhile, for most algorithms, major vertical errors (of over 1 m) are associated with less than 0.05 percent of validation points. Digital Terrain Model (DTM) resolution, ground slope and point cloud density influence the quality of the ground surface model, while for canopy density we find a less significant link with the quality of the interpolated DTMs.data can be used for tree inventories [17][18][19][20], monitoring vegetation health [21][22][23][24] or generating Canopy Height Models (CHMs) [16,25].The main advantage of LiDAR, with regard to forestry, is the fact that laser pulses can penetrate the canopy cover, with some of the pulses reaching the ground level. Therefore, geomorphological data is collected even if the ground is covered by forest vegetation, allowing the generation of a detailed and accurate ground surface model.In general, a data structure that models the elevation over an area is called a Digital Elevation Model (DEM). In short, a DEM is simply a surface that represents the elevation of a certain area in reference to a common vertical datum. When this type of model is used for a representation of the bare-earth surface, it can also be termed as Digital Terrain Model (DTM). In this paper, we opted for the term DTM, in order to emphasize the fact that the models we analyse, while generally speaking classify as DEMs, are meant specifically to represent the surface of the bare-earth.To obtain such a representation of the ground surface, a LiDAR point cloud must initially be filtered-a process which involves the separation of ground-level points from the orig...
Society is increasingly aware of the important role of forests and other woodlands as cultural heritage and as providers of different ecosystem services, such as biomass provision, soil protection, hydrological regulation, biodiversity conservation and carbon sequestration, among others [...]
Land remote sensing capabilities in the optical domain have dramatically increased in the past decade, owing to the unprecedented growth of space-borne systems providing a wealth of measurements at enhanced spatial, temporal and spectral resolutions. Yet, critical questions remain as how to unlock the potential of such massive amounts of data, which are complementary in principle but inherently diverse in terms of products specifications, algorithm definition and validation approaches. Likewise, there is a recent increase in spatiotemporal coverage of in situ reference data, although inconsistencies in the used measurement practices and in the associated quality information still hinder their integrated use for satellite products validation. In order to address the above-mentioned challenges, the European Space Agency (ESA), in collaboration with other Space Agencies and international partners, is elaborating a strategy for establishing guidelines and common protocols for the calibration and validation (Cal/Val) of optical land imaging sensors. Within this paper, this strategy will be illustrated and put into the context of current validation systems for land remote sensing. A reinforced focus on metrology is the basic principle underlying such a strategy, since metrology provides the terminology, the framework and the best practices, allowing to tie measurements acquired from a variety of sensors to internationally agreed upon standards. From this general concept, a set of requirements are derived on how the measurements should be acquired, analysed and quality reported to users using unified procedures. This includes the need for traceability, a fully characterised uncertainty budget and adherence to community-agreed measurement protocols. These requirements have led to the development of the Fiducial Reference Measurements (FRM) concept, which is promoted by the ESA as the recommended standard within the satellite validation community. The overarching goal is to enhance user confidence in satellite-based data and characterise inter-sensor inconsistencies, starting from at-sensor radiances and paving the way to achieving the interoperability of current and future land-imaging systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.