Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: For hospitalized adults, it is important to initiate the early reintroduction of oral food in accordance with nutrition support team guidelines. The aim of this study was to develop and validate a machine learning-based algorithm that predicts the early termination of medical nutritional therapy (the transition to oral feeding). Methods: This retrospective cohort study included consecutive adult patients admitted to the Hacettepe hospital (from 1 January 2018 to 31 December 2022). The outcome of the study was the prediction of an early transition to adequate oral feeding before discharge. The dataset was randomly (70/30) divided into training and test datasets. We used six ML algorithms with multiple features to construct prediction models. ML model performance was measured according to the accuracy, area under the receiver operating characteristic curve, and F1 score. We used the Boruta Method to determine the important features and interpret the selected features. Results: A total of 2298 adult inpatients who were followed by a nutrition support team for medical nutritional therapy were included. Patients received parenteral nutrition (1471/2298, 64.01%), enteral nutrition (717/2298, 31.2%), or supplemental parenteral nutrition (110/2298, 4.79%). The median (interquartile range) Nutritional Risk Screening (NRS-2002) score was 5 (1). Six prediction algorithms were used, and the artificial neural network and elastic net models achieved the greatest area under the ROC in all outcomes (AUC = 0.770). Ranked by z-value, the 10 most important features in predicting an early transition to oral feeding in the artificial neural network and elastic net algorithms were parenteral nutrition, surgical wards, surgical outcomes, enteral nutrition, age, supplemental parenteral nutrition, digestive system diseases, gastrointestinal complications, NRS-2002, and impaired consciousness. Conclusions: We developed machine learning models for the prediction of an early transition to oral feeding before discharge. Overall, there was no discernible superiority among the models. Nevertheless, the artificial neural network and elastic net methods provided the highest AUC values. Since the machine learning model is interpretable, it can enable clinicians to better comprehend the features underlying the outcomes. Our study could support personalized treatment and nutritional follow-up strategies in clinical decision making for the prediction of an early transition to oral feeding in hospitalized adult patients.
Background: For hospitalized adults, it is important to initiate the early reintroduction of oral food in accordance with nutrition support team guidelines. The aim of this study was to develop and validate a machine learning-based algorithm that predicts the early termination of medical nutritional therapy (the transition to oral feeding). Methods: This retrospective cohort study included consecutive adult patients admitted to the Hacettepe hospital (from 1 January 2018 to 31 December 2022). The outcome of the study was the prediction of an early transition to adequate oral feeding before discharge. The dataset was randomly (70/30) divided into training and test datasets. We used six ML algorithms with multiple features to construct prediction models. ML model performance was measured according to the accuracy, area under the receiver operating characteristic curve, and F1 score. We used the Boruta Method to determine the important features and interpret the selected features. Results: A total of 2298 adult inpatients who were followed by a nutrition support team for medical nutritional therapy were included. Patients received parenteral nutrition (1471/2298, 64.01%), enteral nutrition (717/2298, 31.2%), or supplemental parenteral nutrition (110/2298, 4.79%). The median (interquartile range) Nutritional Risk Screening (NRS-2002) score was 5 (1). Six prediction algorithms were used, and the artificial neural network and elastic net models achieved the greatest area under the ROC in all outcomes (AUC = 0.770). Ranked by z-value, the 10 most important features in predicting an early transition to oral feeding in the artificial neural network and elastic net algorithms were parenteral nutrition, surgical wards, surgical outcomes, enteral nutrition, age, supplemental parenteral nutrition, digestive system diseases, gastrointestinal complications, NRS-2002, and impaired consciousness. Conclusions: We developed machine learning models for the prediction of an early transition to oral feeding before discharge. Overall, there was no discernible superiority among the models. Nevertheless, the artificial neural network and elastic net methods provided the highest AUC values. Since the machine learning model is interpretable, it can enable clinicians to better comprehend the features underlying the outcomes. Our study could support personalized treatment and nutritional follow-up strategies in clinical decision making for the prediction of an early transition to oral feeding in hospitalized adult patients.
A multidisciplinary approach is necessary for nutrition therapy to be effective. A nutrition teams may have varying duties and obligations according on hospitals, institutions, and nations. The purpose of the review is to present a comparative examination of the organization and structure of these units based on the work of a researcher who collaborated with the nutrition teams of two different nations. At the end of the review, the differences between Türkiye and France nutrition teams were outlined and it was aimed to plan future research that would include examples of good practice in both countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.