An effective technique to measure foliage chlorophyll concentration (Chl) at a large scale and within a short time could be a powerful tool to determine fertilization amount for crop management. The objective of this study was to investigate the inversion of foliage Chl vertical-layer distribution by bi-directional reflectance difference function (BRDF) data, so as to provide a theoretical basis for monitoring the growth and development of winter wheat and for providing guidance on the application of fertilizer. Remote sensing could provide a powerful tool for large-area estimation of Chl. Because of the vertical distribution of leaves in a wheat stem, Chl vertical distribution characteristics show an obvious decreasing trend from the top of the canopy to the ground surface. The ratio of transformed chlorophyll absorption reflectance index (TCARI) to optimized soil adjusted Wenjiang Huang is an associate professor of application of quantitative remote sensing in agriculture. vegetation index (OSAVI) was called the canopy chlorophyll inversion index (CCII) in this study. The value of CCII at nadir, ±20 and ±30°, at nadir, ±30 and ±40°, and at nadir, ±50 and ±60°view angles were selected and assembled as bottom-layer Chl inversion index (BLCI), middle-layer Chl inversion index (MLCI), and upper-layer Chl inversion index (ULCI), respectively, for the inversion of Chl at the vertical bottom layer, middle layer, and upper layer. The root mean squared error (RMSE) between BLCI-, MLCI-, and ULCI-derived and laboratory-measured Chl were 0.7841, 0.9426, and 1.7398, respectively. The vertical foliage Chl inversion could be used to monitor the crop growth status and to guide fertilizer and irrigation management. The results suggested that vegetation indices derived from bi-directional reflectance spectra (e.g., BLCI, ULCI, and MLCI) were satisfactory for inversion of the Chl vertical distribution.