Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque ( Macaca mulatta ) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0–6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Exposure to ionizing radiation for oncological therapy increases the risk for late-onset fractures in survivors. However, the effects of total body irradiation (TBI) on adult bone are not well-characterized. The primary aim of this study was to quantify the long-term effects of TBI on bone microstructure, material composition, and mechanical behavior in skeletally mature rhesus macaque ( Macaca mulatta ) non-human primates. Femora were obtained post-mortem from animals exposed to an acute dose of TBI (6.0–6.75 Gy) nearly a decade earlier, age-matched non-irradiated controls, and non-irradiated young animals. The microstructure of femoral trabecular and cortical bone was assessed via micro-computed tomography. Material composition was evaluated by measuring total fluorescent advanced glycation end products (fAGEs). Cortical bone mechanical behavior was quantified via four-point bending and cyclic reference point indentation (cRPI). Animals exposed to TBI had slightly worse cortical microstructure, including lower cortical thickness (-11%, p = 0.037) and cortical area (-24%, p = 0.049), but similar fAGE content and mechanical properties as age-matched controls. Aging did not influence cortical microstructure, fAGE content, or cRPI measures but diminished femoral cortical post-yield properties, including toughness to fracture (-32%, p = 0.032). Because TBI was administered after the acquisition of peak bone mass, these results suggest that the skeletons of long-term survivors of adulthood TBI may be resilient, retaining or recovering their mechanical integrity during the post-treatment period, despite radiation-induced architectural deficits. Further investigation is necessary to better understand radiation-induced skeletal fragility in mature and immature bone to improve care for radiation patients of all ages.
Type 1 diabetes (T1D) is associated with an increased risk of hip fracture beyond what can be explained by reduced bone mineral density, possibly due to changes in bone material from accumulation of advanced glycation end products (AGEs) and altered matrix composition, though data from human cortical bone in T1D are limited. The objective of this study was to evaluate cortical bone material behavior in T1D by examining specimens from cadaveric femora from older adults with long-duration T1D (≥50 years; n = 20) and age- and sex-matched non-diabetic controls (n = 14). Cortical bone was assessed by mechanical testing (4-point bending, cyclic reference point indentation, impact microindentation), AGE quantification (total fluorescent AGEs, pentosidine, carboxymethyl-lysine (CML)), and matrix composition via Raman spectroscopy. Cortical bone from older adults with T1D had diminished post-yield toughness to fracture (-30%, P=.036), elevated levels of AGEs (pentosidine, +17%, P=.039), lower mineral crystallinity (-1.4%, P=.010), greater proline hydroxylation (+1.9%, P=.009), and reduced glycosaminoglycan (GAG) content (-1.3%, P<.03) compared to non-diabetics. In multiple regression models to predict cortical bone toughness, cortical tissue mineral density (Ct.TMD), CML, and Raman spectroscopic measures of enzymatic collagen crosslinks and GAG content remained highly significant predictors of toughness, while diabetic status was no longer significant (adjusted R2 > 0.60, P<.001). Thus, impairment of cortical bone to absorb energy following long-duration T1D is well explained by AGE accumulation and modifications to the bone matrix. These results provide novel insight into the pathogenesis of skeletal fragility in individuals with T1D.
It is unclear if advanced glycation end products (AGEs) are involved in the bone fragility of type 1 diabetes (T1D). We evaluated whether skin AGEs by skin autofluorescence and serum AGEs (pentosidine, carboxymethyl-lysine [CML]) are independently associated with BMD by DXA (lumbar spine, hip, distal radius), trabecular bone score (TBS), serum bone turnover markers (BTMs: C-terminal crossed-linked telopeptide of type 1 collagen, CTX; procollagen type 1 N-terminal propeptide, P1NP; osteocalcin), and sclerostin in participants with and without T1D. Linear regression models were used, with interaction terms to test effect modification by T1D status. In participants with T1D, correlations between skin and serum AGEs as well as between AGEs and 3-year HbA1C were evaluated using Spearman’s correlations. Data are mean±SD or median(interquartile range). We included individuals who participated in a cross-sectional study and had BMD and TBS assessment (106 T1D/65 controls, 53.2% women, age 43±15 years, BMI 26.6±5.5 kg/m2). Participants with T1D had diabetes for 27.6±12.3 years, a mean 3-year HbA1C of 7.5±0.9% and skin AGEs of 2.15±0.54 arbitrary units. A subgroup of 65 T1D/57 controls had BTMs and sclerostin measurements, and those with T1D also had serum pentosidine (16.8[8.2-32.0] ng/mL) and CML [48.0±16.8] ng/mL) measured. Femoral neck BMD, TBS, and BTMs were lower while sclerostin levels were similar in participants with T1D vs controls. T1D status did not modify the associations between AGEs and bone outcomes. Skin AGEs were significantly associated with total hip and femoral neck BMD, TBS, BTMs, and sclerostin before, but not after adjustment for confounders. Serum AGEs were not associated with any bone outcome. There were no significant correlations between skin and serum AGEs, or between AGEs and 3-year HbA1C. In conclusion, skin and serum AGEs are not independently associated with BMD, TBS, BTMs, and sclerostin in participants with relatively well-controlled T1D and participants without diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.