1970
DOI: 10.1145/321607.321613
|View full text |Cite
|
Sign up to set email alerts
|

Accumulation of Round-Off Error in Fast Fourier Transforms

Abstract: The fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier coefficients with a substantial time saving over conventional methods. The finite word length used in the computer causes an error in computing the Fourier coefficients. This paper derives explicit expressions for the mean square error in the FFT when floating-point arithmetics are used. Upper and lower bounds for the total relative mean square error are given. The theoretical results are in good agreement with the actual error ob… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
55
0
1

Year Published

1977
1977
2004
2004

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 83 publications
(58 citation statements)
references
References 4 publications
2
55
0
1
Order By: Relevance
“…Weinstein [29] presented a statistical model for roundoff errors of the floating-point FFT. Kaneko and Liu [19] presented a detailed analysis of roundoff error in the FFT decimation-in-frequency algorithm using floating-point arithmetic. This analysis is later extended by the same authors to the FFT decimation-in-time algorithm [21].…”
Section: Related Workmentioning
confidence: 99%
See 4 more Smart Citations
“…Weinstein [29] presented a statistical model for roundoff errors of the floating-point FFT. Kaneko and Liu [19] presented a detailed analysis of roundoff error in the FFT decimation-in-frequency algorithm using floating-point arithmetic. This analysis is later extended by the same authors to the FFT decimation-in-time algorithm [21].…”
Section: Related Workmentioning
confidence: 99%
“…Our focus will be on the process of translating the hand proofs into equivalent proofs in HOL. The analysis we develop is mainly inspired by the work done by Kaneko and Liu [19], who proposed a general approach to the error analysis problem of the decimation-in-frequency FFT algorithm using floating-point arithmetic. Following a similar idea, we have extended this theoretical analysis for the decimation-in-time and fixed-point FFT algorithms.…”
Section: Related Workmentioning
confidence: 99%
See 3 more Smart Citations