This paper presents a proposal in which the maximum energy density criterion is used to evaluate the dynamic accuracy of LVDT (Linear variable differential transformer) sensors for applications in the energy industry. The solutions proposed in the paper are based on a mathematical model of the LVDT sensor, represented by its frequency response. The mathematical foundations required for the synthesis of such a model and the formulae and algorithm necessary to determine the maximum energy density for the integral-square error criterion are presented. Numerical and simulation calculations are performed using MathCad 15 and MATLAB R2014a programs. The solutions presented in this paper can constitute a basis for the selection of LVDT sensors for applications in the energy industry, with a view to achieving accurate diagnostic measurements.