Temperature, especially temperature distribution, is one of the most fundamental and vital parameters for theoretical study and control of various industrial applications. In this paper, ultrasonic thermometry to reconstruct temperature distribution is investigated, referring to the dependence of ultrasound velocity on temperature. In practical applications of this ultrasonic technique, reconstruction algorithm based on least square method is commonly used. However, it has a limitation that the amount of divided blocks of measure area cannot exceed the amount of effective travel paths, which eventually leads to its inability to offer sufficient temperature information. To make up for this defect, an improved reconstruction algorithm based on least square method and multiquadric interpolation is presented. And then, its reconstruction performance is validated via numerical studies using four temperature distribution models with different complexity and is compared with that of algorithm based on least square method. Comparison and analysis indicate that the algorithm presented in this paper has more excellent reconstruction performance, as the reconstructed temperature distributions will not lose information near the edge of area while with small errors, and its mean reconstruction time is short enough that can meet the real-time demand.