The objective of this study was to construct a sorghum–sudangrass hybrid (SSH) yield prediction model based on climatic, soil, and cultivar information in the southern area of the Korean Peninsula. Besides, the effects of climatic factors on SSH yield were investigated simultaneously. The SSH dataset (n = 105), including Dry Matter Yield (DMY, kg/ha), Seeding-Harvest Accumulated Temperature (SHaAT, °C), Seeding–Harvest Accumulated Precipitation (SHAP, mm), Seeding–Harvest Sunshine Duration (SHSD, h), Soil Suitability Score (SSS), and cultivar maturity information, was developed for model construction. Subsequently, using general linear modeling method, the SSH yield prediction model was constructed as follows: DMY = 6.5SHaAT – 4.9SHAP + 13.8SHSD – 54.4SSS – 1036.4 + Maturity. The impacts of the accumulated thermal climatic variables and accumulated precipitation during crop growth on the variance of SSH yield in this region were confirmed. The summer-concentrated precipitation in the southern area of the Korean Peninsula exceeded the proper range of SSH water requirement and led to stresses to its yield production. Furthermore, to improve the data quality for high fitness model construction, the standard schedule for forage crop cultivation experiment in this region was recommended to be developed, especially under the data requirement in the context of the big data era.