2020
DOI: 10.1038/s41433-020-0883-3
|View full text |Cite
|
Sign up to set email alerts
|

Accuracy of a new intraocular lens power calculation method based on artificial intelligence

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
42
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 45 publications
(46 citation statements)
references
References 12 publications
2
42
0
2
Order By: Relevance
“…For Japanese patients on Southern Kyushu Island, the performance of BUII was no better than that of the constantly optimized SRK/T and Haigis, supporting the importance of adaptation for the patient group. The accuracy improved with the use of SVR for refining the SRK/T with the training set, as presented in previous studies [ 17 20 ]. For Chinese myopic eyes, the machine learning-based calculation showed superior results to the BUII [ 20 ].…”
Section: Discussionsupporting
confidence: 71%
See 1 more Smart Citation
“…For Japanese patients on Southern Kyushu Island, the performance of BUII was no better than that of the constantly optimized SRK/T and Haigis, supporting the importance of adaptation for the patient group. The accuracy improved with the use of SVR for refining the SRK/T with the training set, as presented in previous studies [ 17 20 ]. For Chinese myopic eyes, the machine learning-based calculation showed superior results to the BUII [ 20 ].…”
Section: Discussionsupporting
confidence: 71%
“…Support vector regression (SVR) is a machine learning technique that provides a nonlinear regression function that have at most a certain margin from actually obtained targets (corresponding to prediction errors) for all training data and was as flat as possible (corresponding to minimum amounts of regression coefficients) [ 16 ]. Carmona González et al combined SVR and multivariate adaptive regression spline with training set data using 208 eyes [ 17 ], providing the most accurate performance compared with the 4 conventional formulas. Ladas et al revealed that SVR supervised nonlinear regression machine learning was suitable for optimization of existing IOL power calculation formulas, compared with extreme gradient boosting (XGBoost) and artificial neural network (ANN) [ 18 ].…”
Section: Introductionmentioning
confidence: 99%
“…Daneben wurden mit dem hochauflösenden optischen Kohärenztomografen für den vorderen Augenabschnitt Casia 2 (Tomey, Nürnberg) die interne Vorderkammertiefe ( Generell gilt, dass mit der Anzahl der potenziellen Effektgrößen die Anzahl der benötigten Trainingsdatensätze ansteigt. Können Teile der Vorhersage durch ein belastbares physikalisches Modell beschrieben werden [3], so können diese Teile der Vorhersage in das Berechnungsschema eingebaut werden, sodass die Komplexität des Algorithmus reduziert werden kann und sich damit die Anzahl der benötigten Trainingsdatensätze reduziert. Genau dieses Vorgehen wird im vorliegenden Artikel beschrieben: Hier soll der physikalische Anteil der Berechnung von Intraokularlinsen, der bspw.…”
Section: Patienten Und Methodenunclassified
“…However, key limitations exist among recently-published ML-based IOL calculation methods: (1) performance comparisons limited to older generation formulas, [6] (2) failure to achieve statistically significant improvement over current generation formulas, [7] and (3) small datasets that leave the robustness and generalizability of methods in question. [8] With a goal of advancing the understanding of IOL power selection for general cataract patients and improving refraction prediction accuracy, in the presented study, we developed a novel machine learningbased IOL power calculation method, the Nallasamy formula, based on a large dataset of 5016 cataract patients. In this model, we employed ensemble machine learning methods and novel data augmentation methods.…”
Section: Introductionmentioning
confidence: 99%