Background: Application of chicken egg yolk immunoglobulin Y (IgY) for Helicobacter pylori (H. pylori, HP) has gained much interest in recent years. Comparing with for treatment, IgY may be more advantageous when used for H. pylori detection.
Methods:Nine strains of H. pylori with different genetic backgrounds were inactivated and used to immunize hens, respectively, for the preparation of polyclonal anti-H. pylori immunoglobulin Y (anti-HP IgY). The proteins of H. pylori with reactivity to anti-HP IgY were detected by Western Blot. The five protein bands that can be well recognized by anti-HP IgY of each group, and were prevalent in all nine strains were excised from SDS-PAGE gel, digested and identified by Nano-HPLC-MS/MS analysis.The potential of these identified proteins as antigen detection targets was then assessed by sequence analysis.Results: Anti-HP IgY derived from each group of specific strain immunized hens can recognize self-strain and non-self-strain antigens well. Five immunodominant antigens were identified as chaperonin GroEL, flagellin A, urease subunit alpha, peroxiredoxin and DNA starvation/stationary phase protection protein. Sequences analysis showed that both peroxiredoxin and DNA starvation/stationary phase protection protein were present in all 1000 strains of H. pylori queried, and the amino acid sequences were highly conserved. The highest sequence consistency between the DNA starvation/stationary phase protection protein of H. pylori and non-Helicobacter organisms was 52.59%, and the consistent sites were scattered and there was no continuous long fragment consensus sequence.
Conclusion:DNA starvation/stationary phase protection protein was identified as an immunodominant antigen of H. pylori and sequence analysis indicated that it could serve as a potential antigen target for the diagnosis of H. pylori infection.