AimPrediction of labor progression is important for maternal and fetal health, as improved accuracy can lead to more timely intervention and improved outcomes. This review aims to outline the importance of predicting the progression of spontaneous parturition, detail the various methods employed to enhance this prediction and provide recommendations for future research.MethodsWe searched articles relating to labor progression and systematic review articles on Artificial Inteligence (AI) in childbirth management using PubMed. To supplement, Google Scholar was used to find recent guidelines and related documents.ResultsTraditional methods like vaginal examinations, criticized for subjectivity and inaccuracy, are gradually being replaced by ultrasound, considered a more objective and accurate approach. Further advancements have been observed with machine learning and artificial intelligence techniques, which promise to surpass the accuracies of conventional methods. The Friedman curve, developed in 1954, is the standard for assessing labor progress, but its application to Asian women, in particular, remains controversial, and various studies have reported that the actual rate of labor was slower than that indicated by the Friedman curve.ConclusionThere is a need to innovate methodologies for predicting delivery tailored to modern pregnant women, especially when they have different genetic and cultural backgrounds than their Western counterparts, such as Asians. Future research should develop predictive models of labor progression that aim to enhance medical intervention and improve the safety and well‐being of both mother and child.