Purpose: Expert selected landmark points on clinical image pairs to provide a basis for rigid registration validation. Using combinatorial rigid registration optimization (CORRO) provide a statistically characterized reference data set for image registration of the pelvis by estimating optimal registration. Materials ad Methods: Landmarks for each CT/CBCT image pair for 58 cases were identified. From the landmark pairs, combination subsets of k-number of landmark pairs were generated without repeat, forming k-set for k=4, 8, and 12. A rigid registration between the image pairs was computed for each k-combination set (2,000-8,000,000). The mean and standard deviation of the registration were used as final registration for each image pair. Joint entropy was used to validate the output results. Results: An average of 154 (range: 91-212) landmark pairs were selected for each CT/CBCT image pair. The mean standard deviation of the registration output decreased as the k-size increased for all cases. In general, the joint entropy evaluated was found to be lower than results from commercially available software. Of all 58 cases 58.3% of the k=4, 15% of k=8 and 18.3% of k=12 resulted in the better registration using CORRO as compared to 8.3% from a commercial registration software. The minimum joint entropy was determined for one case and found to exist at the estimated registration mean in agreement with the CORRO algorithm. Conclusion: The results demonstrate that CORRO works even in the extreme case of the pelvic anatomy where the CBCT suffers from reduced quality due to increased noise levels. The estimated optimal registration using CORRO was found to be better than commercially available software for all k-sets tested. Additionally, the k-set of 4 resulted in overall best outcomes when compared to k=8 and 12, which is anticipated because k=8 and 12 are more likely to have combinations that affected the accuracy of the registration.