ObjectiveTo investigate the risk factors involved in radial-femoral artery pressure gradient after cardiac surgery.MethodsIn this retrospective study, we reviewed 412 cardiac surgeries with both femoral artery pressure and radial artery pressure monitoring before cardiopulmonary bypass. 138 patients had radial-femoral artery pressure gradient after cardiopulmonary bypass (group P) but 263 were not (group N). Their hemodynamic data and other demographic data were analyzed.ResultsPhenylephrine usage was 1.7±1.1 mg in group N and 2.9±1.2 mg in group P (P<0.001). Total adrenaline usage was 229.2±116.9 µg in group N and 400.6±145.1 µg in group P (P<0.001). SBP gradient was -4±3, 14±9, 10±4, 0±11 mmHg in group P and -3±3, 0±1, -1±9, -6±4 mmHg in group N after induction, during discontinuation of CPB, at the end of surgery and 1 postoperative day respectively. DBP gradient was 3±3, -1±9, 4±5, 0±8 mmHg in group P and 3±3, 5±2, 7±5, 0±8 mmHg in group N after induction, during discontinuation of CPB, at the end of surgery and 1 postoperative day respectively. MAP gradient was 1±2, 4±6, 6±4, 0±8 mmHg in group P and 1±2, 3±1, 1±4, -2±5 mmHg in group N after induction, during discontinuation of CPB, at the end of surgery and 1 postoperative day respectively. Significant arterial pressure gradient emerged during discontinuation of CPB and at the end of surgery, which was more obvious in group P(P<0.01). CI was 2.0±0.3, 2.3±0.4,2.3±0.4, 2.2±0.4 L/min/m2 in group P and 2.1±0.3, 2.8±0.5,2.8±0.5, 2.8±0.5 L/min/m2 in group N at baseline, after discontinuation of CPB, at the end of surgery and the first postoperative day (P<0.001).ConclusionDetecting the exact central artery pressure is most important when patients have artery pressure gradients after cardiac surgery. Use inotropic agents to improve cardiac output, avoiding excessive vasoconstriction might reduce artery pressure gradient.