Vapour intrusion from the vadose zone-seven algorithms comparedProvoost, J.; Bosman, A.; Reijnders, L.; Bronders, J.; Touchant, K.; Swartjes, F.
Published in:Journal of Soils and Sediments
DOI:10.1007/s11368-009-0127-4
Link to publication
Citation for published version (APA):Provoost, J., Bosman, A., Reijnders, L., Bronders, J., Touchant, K., & Swartjes, F. (2010). Vapour intrusion from the vadose zone-seven algorithms compared. Journal of Soils and Sediments, 10(3), 473-483. DOI: 10.1007/s11368-009-0127-4
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Abstract Background, aim and scope Vapours of volatile organic compounds (VOCs) emanating from contaminated soils may move through the unsaturated zone to the subsurface. VOC in the subsurface can be transported to the indoor air by convective air movement through openings in the foundation and basement. Once they have entered the building, they may cause adverse human health effects. Screening-level algorithms have been developed, which predict indoor air concentrations as a result of soil (vadose zone) contamination. The present study evaluates seven currently used screening-level algorithms, predicting vapour intrusion into buildings as a result of vadose zone contamination, regarding the accuracy of their predictions and their usefulness for screening purpose. Screening aims at identifying contaminated soils that should be further investigated as to the need of remediation and/or the presence of an intolerable human health risk. To be useful in this respect, screening-level algorithms should be sufficiently conservative so that they produce very few false-negative predictions but they should not be overly conservative because they might have insufficient discriminatory power. Materials and methods For this purpose, a comparison is made between observed and predicted soil air and indoor air concentrations from seven reasonably well-documented sites, where the vadose zone was contaminated with aromatic or chlorinated VOCs. The seven screening-level algorithms considered were: Vlier-Humaan (Be), Johnson and Ettinger model (USA), VolaSoil (NL), CSoil (NL), Risc (UK) and the dilution factor models from Norway and Sweden. Calculations are presented in two scatter plots (soil air and indoor air), each containing the predictions versus the observations. Differences between predicted and observed VOCs concentrations were evaluated on the basis of three statistical criteria to establish their accurateness and the usefulness for s...