Background
Consumer-based wearables are becoming more popular and provide opportunities to track individual’s clinical parameters remotely. However, literature about their criterion and known-groups validity is scarce.
Objective
This study aimed to assess the validity of the Fitbit Charge 4, a wrist-worn consumer-based wearable, to measure clinical parameters (ie, daily step count, resting heart rate [RHR], heart rate variability [HRV], respiratory rate [RR], and oxygen saturation) in patients with chronic obstructive pulmonary disease (COPD) and healthy controls in free-living conditions in Belgium by comparing it with medical-grade devices.
Methods
Participants wore the Fitbit Charge 4 along with three medical-grade devices: (1) Dynaport MoveMonitor for 7 days, retrieving daily step count; (2) Polar H10 for 5 days, retrieving RHR, HRV, and RR; and (3) Nonin WristOX2 3150 for 4 nights, retrieving oxygen saturation. Criterion validity was assessed by investigating the agreement between day-by-day measures of the Fitbit Charge 4 and the corresponding reference devices. Known-groups validity was assessed by comparing patients with COPD and healthy controls.
Results
Data of 30 patients with COPD and 25 age- and gender-matched healthy controls resulted in good agreement between the Fitbit Charge 4 and the corresponding reference device for measuring daily step count (intraclass correlation coefficient [ICC2,1]=0.79 and ICC2,1=0.85, respectively), RHR (ICC2,1=0.80 and ICC2,1=0.79, respectively), and RR (ICC2,1=0.84 and ICC2,1=0.77, respectively). The agreement for HRV was moderate (healthy controls: ICC2,1=0.69) to strong (COPD: ICC2,1=0.87). The agreement in measuring oxygen saturation in patients with COPD was poor (ICC2,1=0.32). The Fitbit device overestimated the daily step count and underestimated HRV in both groups. While RHR and RR were overestimated in healthy controls, no difference was observed in patients with COPD. Oxygen saturation was overestimated in patients with COPD. The Fitbit Charge 4 detected significant differences in daily step count, RHR, and RR between patients with COPD and healthy controls, similar to those identified by the reference devices, supporting known-groups validity.
Conclusions
Although the Fitbit Charge 4 shows mainly moderate to good agreement, measures of clinical parameters deviated from the reference devices, indicating that monitoring patients remotely and interpreting parameters requires caution. Differences in clinical parameters between patients with COPD and healthy controls that were measured by the reference devices were all detected by the Fitbit Charge 4.