To compare the accuracy of 16 intraocular lens (IOL) power calculation formulas in pediatric cataract eyes. Patients and Methods: The data records of pediatric patients who had been implanted with three IOL models (SA60AT, MA60AC, and enVista-MX60) between 2012 and 2018 were analyzed. The accuracy of 16 IOL power calculation methods was evaluated: Barrett Universal II (BUII), Castrop, EVO 2.0, Haigis, Hill-RBF 3.0, Hoffer Q, Hoffer QST, Holladay 1, Kane, LSF AI, Naeser 2, Pearl-DGS, SRK/T, T2, VRF, and VRF-G. The non-optimized (ULIB/IOLcon) and optimized constants were used for IOL power calculation. The mean prediction error (PE), Performance Index (FPI), and all descriptive statistics were calculated. Results: Ninety-seven eyes of 97 pediatric patients aged 13.2 (IQR 11.2-17.1) were included. No statistically significant difference (HS-test) was observed (p > 0.818) except for the Hoffer Q, and Naeser 2 (P = 0.014). With optimized lens constants, the best FPI indices were obtained by Hoffer Q (0.256) and VRF-G (0.251) formulas, followed by Hill-RBF 3.0 and BUII, with an index of 0.248. The highest FPI indices with non-optimized constants showed SRK/T and T2 formulas (0.246 and 0.245, respectively), followed by VRF-G and Holladay 1, with an index of 0.244. The best median absolute error values (MedAE) were achieved by Hoffer Q (0.50 D), VRF-G (0.53 D), and Hill-RBF 3.0 (0.54 D), all P ≥ 0.074. Conclusion: Our results place the Hoffer Q, VRF-G, Hill-RBF 3.0, and BUII formulas as more accurate predictors of postoperative refraction in pediatric cataract surgery.